1811000101020001

F.Y. B.C.A. (**Sem** – **I**)

Examination December-2022 Mathematics

()	Seat No:	<i>△</i>
	200	20,

[Time: Three Hours]

[Max. Marks:70]

Instructions:

- (1) All questions are compulsory.
- (2) Figures to the right indicate marks of corresponding question.

Student's Signature

- (3) Follow usual notations.
- (4) Use of non-programmable scientific calculator is allowed.
- **Q.1** Answer the following:

[10]

- 1] Define Infinite Set with illustration.
- 2] If $A = \{a, e, i, o, u\}$ then find the number of sets in power set of A.
- 3] Define: One-One function.
- 4) If $f: A \to B$, where f(x) = 2x 1 and $A = \{1, 2, 3, 4\}$ then find R_f .
- 5] Define: Critical row.
- 6] Prove that $p \wedge c = c$ where p is the statement and c means contradiction.
- 7] Define: Principle of duality.
- 8] Write the dual statement of x . $(y + z) = (x \cdot y) + (x \cdot z)$
- 9] Define Minor of an element.
- 10] Mention which type of matrix is $A = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$
- **Q.2** (a) In usual notations prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

[05]

OR

- (a) In usual notations prove that $(A \cap B)' = A' \cup B'$
- (b) Attempt any two:

[10]

- 1] In a society of 250 people, each person speaks either Gujarati or Hindi, 158 people speak Gujarati and 185 speak Hindi then find
 - (i) the number of people who can speak both the languages.
 - (ii) the number of people who speak only Gujarati.
- **2]** If $A = \{1, 3, 4, 6\}$, $B = \{2, 4, 5\}$ and $C = \{3, 4, 5\}$ then verify that $A \cap (B C) = (A \cap B) (A \cap C)$
- 3] If $A = \{x: x \in N, x < 6\}$, $B = \{x: x \in N, 3 < x < 9\}$ and $C = \{1, 4, 5, 7\}$ the verify $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- **4**] If $A = \{2, 3, 5, 6, 8\}$, $B = \{1, 3, 5, 7, 9\}$ and $U = \{1, 2, ..., 10\}$ find $A \cup B$, $A' \cup B'$, A B, $B \times A$.

Paper / Subject Code: 1811000101020001 / MATHEMATICS

Q.3 (a) If
$$f(x) = x^2 + x - 1$$
, find the value of $f(x + 1) - 3f(x - 1) + 2f(x)$ [05]

OR

(a) If
$$f(x) = \frac{1}{x} + \frac{2}{x-3}$$
 then find $f(1)$, $f(2)$, $f(\frac{1}{3})$, $f(-3)$.

(b) Attempt any two: [10]

1] If
$$f(x) = \frac{x^3 - 27}{x - 3}$$
 then find $\frac{f(-1) + f(-2)}{f(2) + f(0)}$

2] If $f(x) = 2x^2 - 1$ and g(x) = 2x - 1; where $D_f = D_g = \{0, 1, 2\}$. Is f = g? Justify your answer.

3] If
$$f(x) = \frac{1}{x}$$
, $x \in \mathbb{Z} - \{-1, 0, 1\}$ then prove that $f(x - 1) - f(x + 1) = \frac{2}{x^2 - 1}$

4] It is observed that a quadratic function $ax^2 + bx + c$ fits the data points (-1, 8), (1, 4) and (2, 5). Find the constants a, b and c and find y when x = 4.

Q.4 (a)
$$A = \begin{bmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{bmatrix}$$
 then check weather $A^2 = I$?

(a) If
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & -1 & 3 \\ -1 & -1 & 2 \end{bmatrix}$$
 then find $A^2 + 2A - I$

1] Solve the following equations by Cramer's Rule:

$$x + 2y + 3z - 14 = 0$$

 $2x + y + z - 7 = 0$
 $5x + 2y + z - 12 = 0$

2] If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 & 4 \\ 1 & -3 & 2 \\ -1 & 3 & 2 \end{bmatrix}$ then show that $(AB)^T = B^T A^T$.

3] Find inverse of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & -8 \\ 6 & -3 & 0 \end{bmatrix}$$

Paper / Subject Code: 1811000101020001 / MATHEMATICS

4] Solve the following equations by Cramer's Rule:

$$2x + 8y = 3xy$$
$$4x + 12y = 5xy$$

- Q.5 (a) Show that $\{p \Rightarrow (q \Rightarrow r)\} \Rightarrow \{(p \Rightarrow q) \Rightarrow (p \Rightarrow r) \text{ is a tautology.}$ [05]
 - Show that $(D_{21}, +, \cdot, ', 1,21)$ is a Boolean Algebra $\forall a, b \in D_{21}$ a+b=lcm of a, b $a \cdot b = \text{gcd of } a, b$ a'=21/a
 - (b) Attempt any two:
 - 1] Express Boolean function $f(a, b, c) = (a \cdot b) + (a \cdot c) + (b \cdot c)$ as a sum of product in three variables.
 - 2] Using truth tables prove that $p \land (q \lor r) = (p \land q) \lor (p \land r)$.
 - 3] For the element x, y of a boolean algebra, prove that $x \cdot y' = 0 \Leftrightarrow x \cdot y = x$
 - 4] Check the validity of the following argument: Hypothesis $S_1: p \Rightarrow q$, $S_2: q \Rightarrow r$, $S_3:p$

Conclusion: S: r